Package: modi 0.1.2

Beat Hulliger

modi: Multivariate Outlier Detection and Imputation for Incomplete Survey Data

Algorithms for multivariate outlier detection when missing values occur. Algorithms are based on Mahalanobis distance or data depth. Imputation is based on the multivariate normal model or uses nearest neighbour donors. The algorithms take sample designs, in particular weighting, into account. The methods are described in Bill and Hulliger (2016) <doi:10.17713/ajs.v45i1.86>.

Authors:Beat Hulliger [aut, cre], Martin Sterchi [ctb], Tobias Schoch [ctb]

modi_0.1.2.tar.gz
modi_0.1.2.zip(r-4.5)modi_0.1.2.zip(r-4.4)modi_0.1.2.zip(r-4.3)
modi_0.1.2.tgz(r-4.4-any)modi_0.1.2.tgz(r-4.3-any)
modi_0.1.2.tar.gz(r-4.5-noble)modi_0.1.2.tar.gz(r-4.4-noble)
modi_0.1.2.tgz(r-4.4-emscripten)modi_0.1.2.tgz(r-4.3-emscripten)
modi.pdf |modi.html
modi/json (API)
NEWS

# Install 'modi' in R:
install.packages('modi', repos = c('https://martinster.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/martinster/modi/issues

Datasets:
  • bushfire - Bushfire scars.
  • bushfire.weights - Weights for Bushfire scars.
  • bushfirem - Bushfire scars with missing data.
  • lival - Living Standards Measurement Survey Albania 2012
  • sepe - Sample Environment Protection Expenditure Survey.

On CRAN:

6.02 score 4 stars 1 packages 87 scripts 728 downloads 22 exports 2 dependencies

Last updated 2 years agofrom:43d1a676a4. Checks:5 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 25 2025
R-4.5-winNOTEJan 25 2025
R-4.5-linuxNOTEJan 25 2025
R-4.4-winOKJan 25 2025
R-4.4-macOKJan 25 2025
R-4.3-winOKJan 25 2025
R-4.3-macOKJan 25 2025

Exports:BEMEA.distEAdetEAimpEM.normalERER.normalGIMCDind.dijind.dijsMDmissnz.minplotITPlotMDPOEMpsi.lismisweep.operatorTRCweighted.quantileweighted.varweightsumWinsimp

Dependencies:MASSnorm

Introduction to modi

Rendered frommodi_vignette.Rmdusingknitr::rmarkdownon Jan 25 2025.

Last update: 2023-03-13
Started: 2018-07-24